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Population increases moderately if at all, the

extent of urbanization is relatively small, forest

area increases, and demand for agricultural

land decreases. This allows changes in land

management that could decrease vulnerability.

Problematic trends in the EU15þ are mostly

climate related.

The range of potential impacts in Europe

covers socioeconomic options (storylines) and

variation among GCMs. For most ecosystem

services the A1FI scenario produced the biggest

negative impacts, and the B scenarios seemed

preferable. However, a division into either

Beconomic[ (A scenarios) or Bequitable and

environmental[ (B scenarios) does not reflect all

societal choices, given that sustainability does

not forbid economic prosperity (3). The four

storylines help explore but do not contain our

optimal future pathway.

Among all European regions, the Mediter-

ranean appeared most vulnerable to global

change. Multiple potential impacts were pro-

jected, related primarily to increased temper-

atures and reduced precipitation. The impacts

included water shortages, increased risk of

forest fires, northward shifts in the distribution

of typical tree species, and losses of agricultural

potential. Mountain regions also seemed vul-

nerable because of a rise in the elevation of

snow cover and altered river runoff regimes.

The sustained active participation of stake-

holders indicated that global change is an issue

of concern to them, albeit among many other

concerns. The development of adaptation

strategies, such as for reduced water use and

long-term soil preservation, can build on our

study but requires further understanding of the

interplay between stakeholders and their envi-

ronment in the context of local, national, and

EU-wide constraints and regulations.
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Representation of Action-Specific
Reward Values in the Striatum

Kazuyuki Samejima,1*. Yasumasa Ueda,2 Kenji Doya,1,3

Minoru Kimura2*

The estimation of the reward an action will yield is critical in decision-making. To
elucidate the role of the basal ganglia in this process, we recorded striatal neurons
of monkeys who chose between left and right handle turns, based on the
estimated reward probabilities of the actions. During a delay period before the
choices, the activity of more than one-third of striatal projection neurons was
selective to the values of one of the two actions. Fewer neurons were tuned to
relative values or action choice. These results suggest representation of action
values in the striatum, which can guide action selection in the basal ganglia circuit.

Animals and humans flexibly choose actions in

pursuit of their specific goals in the en-

vironment on a trial-and-error basis (1, 2). The-

ories of reinforcement learning (3) describe

reward-based decision-making and adaptive

choice of actions by the following three steps:

(i) The organism estimates the action value,

defined as how much reward value (probability

times volume) an action will yield. (ii) It

selects an action by comparing the action

values of multiple alternatives. (iii) It updates

the action values by the errors of estimated

action values. Reinforcement learning models

of the basal ganglia have been put forward (4–6).

The midbrain dopamine neurons encode errors

of reward expectation (7–9) and motivation (9),

and they regulate the plasticity of the cortico-

striatal synapses (10, 11). Neuronal discharge

rates in the cerebral cortex (12–15) and stri-

atum (16–18) are modulated by rewards that

are estimated by sensory cues and behavioral

responses. These observations are consistent

with action selection through the reinforcement

learning rule (3) and with the notion of

stimulus-response learning (19, 20). However,

two critical questions remain unanswered: Do

the striatal neurons acquire action values in

their activity through learning? How is the

striatal neuron activity involved in reward-

based action selection? Here we show by using

a reward-based, free-choice paradigm that the

striatal neurons learn to encode the action

values through trial-and-error learning and
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predict choice probability of action options

under a reinforcement learning algorithm.

Two macaque monkeys performed a reward-

based, free-choice task of turning a handle to the

left or right (Fig. 1A). The monkeys held a

handle in the center position for 1 s (delay

period) with their left hand. Then, they turned

the handle in either the left (a 0 L) or right (a 0
R) direction. A light-emitting diode (LED) on

the turned side was illuminated stochastically

in either green or red. The green and red LEDs

instructed monkeys that either a large reward

(0.2 ml of water) or a small reward (0.07 ml),

respectively, would follow. The probabilities of

a large reward after left and right turns were

fixed during a block of 30 to 150 trials and

varied between five types of trial blocks. In the

B90-50[ block, for example, the probability of

a large reward for the left turn was 90%, and

for the right turn, 50%. In this case, by taking

the small reward as the baseline (r 0 0) and the

large reward as unity (r 0 1), the left action

value Q
L

was 0.9 and the right action value

Q
R

was 0.5. We used four asymmetrically re-

warded blocks, B90-50,[ B50-90,[ B50-10,[ and

B10-50,[ and one symmetrically rewarded

block, B50-50[ (Fig. 1B). An important feature

of this block design was that the neuronal

activity related to the action value could be

dissociated from that related to action choice.

Although the monkeys should prefer the left

turn in both 90-50 and 50-10 blocks, the action

value Q
L

for the left turn changes from 0.9

to 0.5. Conversely, in the 90-50 and 10-50

blocks, although the monkey_s choice behav-

ior should be the opposite, the action value Q
R

remains at 0.5.

Figure 1C shows a representative time

course of choices on individual trials and the

left-turn choice probability, P
L
. Figure 1D

shows the average curves of P
L

during 2084

blocks of trials by monkey RO. The P
L

started

at around 0.5 (average of first 10 trials: 0.48

for monkey RO and 0.39 for monkey AR) and

stayed around 0.5 in a symmetrically rewarded

block in both monkeys. In asymmetrically re-

warded blocks, the choice probability gradual-

ly shifted toward the action with higher reward

values (binomial test, P G 0.01 for 50-50 ver-

sus four asymmetrically rewarded blocks). Al-

though the time courses of the P
L

shifts were

variable among individual blocks, such as

those in Fig. 1C, the average P
L

at the same

number of trials after the block start were

not significantly different between 90-50 and

50-10 blocks, and between 50-90 and 10-50

blocks (Fig. 1D, P 9 0.05).

Large
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Fig. 1. Reward-based, free-choice task and monkey’s performance. (A) Time
chart of events that occurred during the task. (B) Diagram of large-reward
probabilities for left, P(r k a 0 L), and right handle turn, P(r k a 0 R), in five
types of trial blocks. (C) Representative record of individual choices in the
five blocks of trials. Red and blue vertical lines indicate individual choices of
trials (long line: large-reward trial, short line: small-reward trial, crosses: error
trials with no reward). The light blue trace in the middle indicates the
probability of a left-turn choice (PL, running average of last 10 choices). (D)
Average curves of PL (solid line) and its 95% confidence interval (shaded
band) in five trial blocks in monkey RO. Data of 977, 306, 282, 277, and 242
blocks are shown for 50-50, 10-50, 50-10, 50-90, and 90-50 blocks,
respectively. Color code is the same as in (B).

Fig. 2. Three representative reward-value coding neurons in the striatum. (A) A left–action value
(QL-type) neuron in the anterior striatum. Average discharge rates during 10-50 and 90-50 blocks
(left panel) and during 50-10 and 50-90 blocks (right panel) are shown. (B) Three-dimensional bar
graph of average magnitudes and standard deviation of activity during delay period [shaded period
in (A)]. Floor gradient shows the regression surface of neuronal activity by large-reward prob-
ability after left and right turns. (C and D) A right–action value (QR-type) neuron in anterior
putamen. (E and F) A differential–action value (DQ and m-type) neuron with correlation also to
action choice. The average activity curves in (A), (C), and (E) are smoothed with a Gaussian kernel
(s 0 50 ms). Double and single asterisks indicate significant difference at P G 0.001 and P G 0.01
in Mann-Whitney U test, respectively.
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We recorded 504 striatal projection neurons

in the right putamen and caudate nucleus of

two monkeys. The present study focused on

the 142 (61 in monkey RO, 81 in monkey AR)

neurons that displayed increased discharges

during at least one task event and those that

had discharge rates higher than 1 spike/s dur-

ing the delay period. We compared the average

discharge rates during the delay period from

two asymmetrically rewarded blocks. The

comparison was based on the trials after the

monkey_s choices had reached a Bstationary

phase,[ when the choice probability was

biased toward the action with higher reward

probability in more than 70% of trials. In half

of the neurons (72/142 in two monkeys),

activity was modulated by either Q
L

or Q
R
.

Figure 2, A and B, shows a representative neu-

ron in which the delay-period discharge rate

was significantly higher in the 90-50 block

(blue) than in the 10-50 block (orange) (P 0
0.003, two-tailed Mann-Whitney U test). Delay

period discharges were not significantly differ-

ent (P 0 0.70) between the 50-10 and 50-90

blocks (Fig. 2B), for which preferred actions

were the opposite. Thus, the neuron encodes

the left action value, Q
L
, but not the action itself.

Another neuron in Fig. 2, C and D, showed a

significantly higher discharge rate in the 50-10

block than in the 50-90 block (P G 0.001), but

there was no significant difference between the

10-50 and 90-50 blocks (P 0 0.67). This neu-

ron may code a negative right action value,

–Q
R

. We also found neurons (Fig. 2, E and

F) that discharged more in the 90-50 block than

in the 10-50 block (P 0 0.028), but less in the

50-90 block than in the 50-10 block (P 0 0.003).

This neuron may encode the difference of action

values, Q
L

– Q
R
, and choice of left turn.

To study the representation of action values

in the population of striatal neurons, we made

a multiple regression analysis of neuronal

discharge rates with Q
L

and Q
R

as regressors

(21). Figure 3A shows a scatter plot of t-values

of the regression coefficients. We found 24

(17%) BQ
L
-type[ neurons, which had signifi-

cant regression coefficients to Q
L

(t-test, P G
0.05) but not to Q

R
, and 31 (22%) BQ

R
-type[

neurons correlated to Q
R

but not to Q
L
. There

were 16 (11%) Bdifferential action value (DQ-

type)[ neurons correlated with the difference

between Q
L

and Q
R
. One neuron was classified

as Bvalue (V)-type[ (G1%), which was positively

correlated with reward values independent of

actions. In 41 neurons, there were significant

regression coefficients to the behavioral measures

including chosen action, reaction time, and

movement time (Fig. 3A, open symbols). There

were 18 Bmotor related (m)-type[ neurons that

had significant t-values only for behavioral

measures. The discharge rates of most action

value neurons (19/24 in Q
L
-type, 24/31 in Q

R
-

type) were not correlated significantly with the

behavioral measures. We concluded that, during

a delay period before action choices, more than

one-third of striate projection neurons examined

(43/142) encoded action values, and that 60%

(43/72) of all the reward value–sensitive neurons

were action-value neurons.

We next examined whether the neuronal

activity encoding action values predict mon-

key_s action choices (21). The action values

Q
L
(i) and Q

R
(i) at the ith trial of a single

block of trials were estimated based on a stan-

dard reinforcement learning model and the past

Fig. 3. Multiple regression analysis of neuronal activity with regressor of action value. (A) A scatter plot
of partial regression coefficients of action values for left turn (QL) and right turn (QR). Blue circles, QL-
type; red circles, QR-type; green squares, DQ-type; magenta triangles, V-type; crosses, m-type. Dark
dots indicate neurons with no significant t-values for either regressor. Interrupted lines indicate levels
of significant QL and QR slopes at P 0 0.05 (t 0 T1.97, 140 degrees of freedom). Open symbols
indicate the neurons that also have significant regression coefficient of animals’ choice, reaction time,
or movement time. Letters a, b, and c indicate the example neurons in Fig. 2; A and B, C and D, and E
and F, respectively. (B) Pie chart of neurons categorized into the four main types (QL, QR, DQ, and m)
and three subtypes (DQ and m, QL and m, and QR and m).

Fig. 4. Prediction of action choices and multiple regression analysis of neuronal
activity by action values based on a reinforcement learning model. (A) An
example of the time course of action values and predicted actions. From the
data of actions and rewards (top panel: long vertical blue and red lines, large-
reward trial; short lines, small-reward), the action values were estimated
(bottom panel: QL(i), blue line; QR(i), red line) by a reinforcement learning
model (21). Black and cyan curves indicate the action probability PL given by
the action values and the actual action choice ratio given by the weighted
averages with a Gaussian kernel (s 0 2.5). (B) An example of the activity of
a caudate neuron plotted on the space of estimated action values QL(i) and

QR(i). It had significant regression coefficients with QL(i) (slope kQL 0 –9.7, P G
0.001, t-test), but not with QR(i) (kQR 0 2.3, P 0 0.29). Heights and colors of
stem plots indicate the discharge rates of the neuron and individual choices of
actions (blue, left; red, right), respectively. (C) The discharge rates of the
neuron in (B) are projected on the QL(i) and QR(i) axes. The color code is the
same as in (B). Gray lines are derived from the regression model. Circles and
error bars indicate average and SD of neural discharge rates for each of 10
equally populated action value bins. The double asterisk indicates that the
discharge rates were significantly correlated with QL(i). This neuron was not
selective to action itself (Mann-Whitney U test, P 0 0.33). ns, not significant.
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action a( j) and reward r( j) ( j 0 1,I, i – 1)

(3, 22). The estimated action values success-

fully predicted the probability of subsequent

action choices, a(i), (Fig. 4A and fig. S2).

Figure 4, B and C, shows a Q
L
-type neuron

whose discharge rate during the delay period

followed the time course of Q
L
(i) but not of

Q
R
(i) (double asterisk regression slope for

Q
L
(i) 0 –9.7, P G 0.001, slope for Q

R
(i) 0

2.3, P 0 0.29) (Fig. 4, B and C). These results

suggest that a large subset of striatal neurons

encode the action values that are updated by the

history of actions and rewards and determine

the probability of selecting a particular action.

Action-value coding in the striatum may be a

core feature of information processing in the basal

ganglia. The striatum is the primary target of

dopaminergic signals, which regulate the plas-

ticity of cortico-striatal synaptic transmission

(10, 11), conveying signals of actions and cogni-

tion. Thus, the striatum may be the locus where

reward value is first encoded in the brain. This

idea was supported by theoretical prediction (23)

and by neural recordings from the striatum and

the prefrontal cortex during association learning

(24). Our finding of the successful prediction of

individual action choices by estimated action

values suggests the involvement of striatal

action-value neurons in the process of selection

of an action under a reinforcement learning

algorithm. Whereas a large population of striatal

neurons encoded action values, a much smaller

population of neurons encoded forthcoming

action during a premovement delay period. This

favors action value–based models (4, 25) for the

striatal functions over stimulus-response learning

and actor-critic models (5, 6). However, further

studies on the neuronal activity before and after

action choices, not only in the striatum but also

downstream from it, are necessary to clarify

whether action selection is realized within the

striatum through lateral inhibition (5, 26) or in

the globus pallidus (4, 27). Deficits in action-

value coding may lead to an inappropriate

selection of competing actions or an inability to

select any action, which might underlie some of

the core symptoms of Parkinson_s disease.
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Nucleus Accumbens Long-Term
Depression and the Expression of

Behavioral Sensitization
Karen Brebner,1,3* Tak Pan Wong,1,2* Lidong Liu,1,2 Yitao Liu,1,2

Paul Campsall,1,2 Sarah Gray,1,3 Lindsay Phelps,1,3

Anthony G. Phillips,1,3. Yu Tian Wang1,2.

Drug-dependent neural plasticity related to drug addiction and schizophrenia can be
modeled in animals as behavioral sensitization, which is induced by repeated
noncontingent or self-administration of many drugs of abuse. Molecular mech-
anisms that are critical for behavioral sensitization have yet to be specified.
Long-term depression (LTD) of a-amino-3-hydroxy-5-methyl-isoxazole-4-
propionic acid receptor (AMPAR)–mediated synaptic transmission in the brain
has been proposed as a cellular substrate for learning and memory. The ex-
pression of LTD in the nucleus accumbens (NAc) required clathrin-dependent
endocytosis of postsynaptic AMPARs. NAc LTD was blocked by a dynamin-derived
peptide that inhibited clathrin-mediated endocytosis or by a GluR2-derived
peptide that blocked regulated AMPAR endocytosis. Systemic or intra-NAc
infusion of the membrane-permeable GluR2 peptide prevented the expression
of amphetamine-induced behavioral sensitization in the rat.

Behavioral sensitization of motor activity

induced by repeated noncontingent or self-

administration of drugs of abuse such as am-

phetamine, cocaine, heroin, and nicotine is

an animal model of enduring drug-induced

neuroplasticity (1–4). Behavioral sensitiza-

tion involves neural adaptations in mesocor-

ticolimbic regions, including the NAc, that

receive dopaminergic (DA) projections from

the ventral tegmental area (VTA) and excit-

atory glutamatergic inputs from the pre-

frontal cortex (PFC) (5, 6). Initial work on

behavioral sensitization focused on pre- and

postsynaptic changes in DA systems, but re-

cent evidence implicates synaptic plasticity

in glutamatergic transmission in both the

VTA and NAc (6–9). Whereas experience-

dependent alterations in synaptic strength in

the VTA are linked to the induction of

behavioral sensitization, synaptic plasticity

in the NAc appears to mediate its long-term

maintenance and expression (7, 10, 11). Re-

cent experiments indicate a role for LTD, a

proposed cellular substrate for learning and

memory, in behavioral sensitization. Sen-

sitized mice show an enhanced depression
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